23.1 Anti friction bearings/roller bearings
23.1.1 Basics and failure mechanisms
There is a multitude of specialist literature and articles (Lit. 23.1.1-22), which deal with the
identifikation of failures on anti friction bearings
(here named bearings) and its causes. Thereby the macroscopic
and microscopic failure mode/appearance is correlated in a systematic with the most probable cause (Ill.
23.1.3-6). These publications are often in the practical work only limited useful, because the failures
propagated already so widly, that satisfactory conclusions are no more possible. In extensive publications,
especially emphasized, are failure modes/appearances. Expert contributions rather deal with failure mechanisms and
its influence, Both do not satisfy the practician of the aero engine technology.
In this chapter those informations are combined. The typical failure mechanisms of bearings are
described and explained, as well as correlated with failure modes/appearances. This shall enable to
identify potential dangers in time and be aware to avoid those. Are changes observed at the bearings, the evaluation
and assessment correspondent with specifications/instructions and manuals are suppiorted with a
deeper understanding.
In aeroengines, two types of bearing are distinguished depending from the sort of application. Main
bearings (Lit. 23.1.1-1), which carry the radial and axial (thrust bearing) loads of the rotors and bearings at
the connection to accessory devices and inside these (e.g., radialdrive/tower shaft to the accessory gear).
Aeroengine bearings differ basically from those of the common mechanical engineering. What
distinguishs them are the demanding operation conditions like high service temperatures and high `n
x D' values (high circumferential speeds). To damp
vibrationes from unbalances and prevent dynamic overloads on
the supporting structures, damped or
undamped radial movable (elastic or sliding guided), suspended
bearings are used (Fig. "Damped main bearings").
Besides this chapter, bearing problems and failures are also discussed under separate aspects in the
further volumes of these publication:
- With the reconstruction of the temporal failue sequence deals volume 1, Ill. 4.5-13.
- The monitoring and identification in time of developing bearing failures is in detail discussedin chapter 22.3.3.1 (oil investigations and evaluation of particles) and chapter 22.3.4 (oilmonitoring).
- The fracture of shafts as result of bearing failures, is discussed in volume 1, chapter 4.5.
- Bearing failures by lightnings can be found in volume 1, chapter 5.1.3.
- Deterioration by „brinelling“ during transport, see volume 4, Ill. 18-8 and Ill. 8-10.
- Bearing problems by fretting (vibration wear) at beating seats volume 2, Ill. 6.2-16 and Ill. 6.2-17.
- Bearing contaminatuion by particles from bearing chamber seals (labyrinths) can be found in volume 2, Ill. 7.3.2-12.
Fig. "Operation influennces of main bearings" (Lit. 23.1.1-38 bis Lit. 23.1.1-40):
'Aviation bearings' are subjected the loading types
of the common machine engineering. However the especially
demanding service conditions with highest safety requirements
are a big challenge. So weight and assembly space are of unusual importance.
This show specific designs. So the outer rings also form an application specific flange (sketch). Gear
shafts are provided with integral bearing inner rings (Fig. "Failures of gear wheels"). Damped
and elastic designs (Fig. "Damped main bearings") guarantee an optimal dynamic behaviour of the rotors. Typical for aeroengines are:
High outer loads: To these belong operation loads and stresses, according to special service
conditions. Often shock forces are concerned. In radial direction act e.g.,
landing bumps and unbalances.
Typical are failures on rotor blades or because of rotor bow (volume 2, Ill. 7.1.2-9). Thrust bearings must
take unusual, high axial forces from compressor surges (volume 3, Ill. 11.2.1.2-1).
Lubrication must be guaranteed also under high g-loads, also during maneuvers, especially in military
missions (volume 2, Ill. 7.1.2-12). Even the short time loss of
the oilsupply must be tolerated.
Aggravating acts during this, because of the decreased cooling, the
oil properties in the limit range, because of
the high temperatures. A special problem is the lubrication and cooling of the sliding guided, high
speed rotating cages (Fig. "Mechanisms of rolling wear") and rolling elements in the cage pockets.
Extreme rotation speeds have, because of the large main bearing diameter (D
x n values) of big aeroengines, a special significance (Fig. "Unbalance of rollers in bearings" and Ill. 23.1.1 -10.3). For aeroengines with
little power, the rotation speeds lay above 50 000 U/min, in ranges where small damages act
catastrophic within seconds. The centrifugal forces of the rolling
elements demand a high part of the bearing loading capacity. Especially high demands are claimed a the dimensional accuracy, respectively
the balance condition of the rotating elements (Fig. "Oscillation of the rollers sc skewing weaving"). Effects like
cage slippage (skidding 23.1.1-14.1) or
roller flutter (roller weaving, Fig. "Oscillation of the rollers sc skewing weaving") urge into the foreground. This is also caused
by the high resistance of the oil film. Three shaft aeroengines own so called
intershaft bearings. The inner ring and the outer ring of these are operating with different rotation speeds and or counter-rotating.
A special problem is the supply and scavenge of the lubrication oil.
High service temperatures demand as well from the bearing materials (Fig. "Improvement of bearing materials"), as also
from the oil a load bearing capacity in the limit range. With this, the ignition of an
oil fire gets more and more probable (volume 2, Ill. 9.2-2). especially demanding is the temperature load on the hot part
(e.g., turbine). The problem are high temperatures and coking of the hot part bearings after shut off of
the engine (heat soaking, Fig. "Problema by heat soaking" and Ill. 23.3.2-6.2).
Environmental influences: Developing of condensation
during the shut off periods, as well as sea salt act corrosive. This can demand the application of special materials (Fig. "Improvement of bearing materials"). Here, a
corrosion cell formation with the cage material
(e.g., bronze, silver plating) acts corrosion promoting .
Assembly conditions like module design
can demand different combinations of the bearing inner
ring with the outer ring and the cage. To this belongs also the damaging danger of the
roller bearing during the pushing together during the assembly of the modules (Fig. "Causes for transport damages" and volume 1, Ill. 4.3-6).
Wear/fretting must be especially considered at
oil damped bearings (Fig. "Damped main bearings"), caused by the
principal determined oscillating movements. At bearing seats, relative movements caused by the light and
elastic design of shafts and casings, can promote
fretting. This must be considered with a suitable
material selection of the bearing seat. For example the bearing innr ring must not have a
direct contact with a titanium alloy. In this case a
TC (tungsten carbide) coating at the shaft has proven (volume 2, Ill.
6.2-16 and Ill. 6.2-17).
Fig. "Damped main bearings" (Lit. 23.1.1-2 up to Lit. 23.1.1-4): Anti friction bearings can be
damped as well mechanically (friction) as with an
oil cushion
Today generally oil damped systems prevailed (frame). The oil cushion is located in a
circumferential gap at the outer ring or in a supporting casing ring. The gap is rather sealed at military applications
with sidewise, axially pressed on O rings. If the oil cushion is connected with a feeding and a
drainage (sketch above right), the oilstream can dissipate
heat. Is this not the case, it must taken care that
the O rings get not overheated (chapter 23.4).
At one design the bearing is centered by an elastic spring
element („squirrel cage”). This also serves
as locking against rotation. Such a spring usually has a
shape similar a drum, with axial bars. At
smaller bearings we find one piece designs (detail above left), larger bearings are supported by
assembled „cages“ (bars as rods with threaded heads).
You also find only oil dampened designs. Here,
without an elastic centering, the outer ring is
secured against rotation with fixing lugs in radial slots.
Dampened bearings are preferably used near turbine disks. Compared with the stiff rotordrums of
a compressor, this turbine shafts are elastic. Operation caused unbalances (thermal distortion,
oxidation of the blading) often can only be controlled with damped bearings. With a centering elastic
suspension, natural frequencies can be lowered from the opreation range to non-dangerous rotation
speeds.
Advantages against an undampened mount:
- Vibrations of the rotor and the aeroengine are lowered during unbalances. * Resonances will be suppressed, natural frequencies can be shifted to more suitable ranges.
- Lower vibration fatigue stresses of supporting structures like bearing chambers respectively casings.
- Shock loads from the outside do less act at the rotor.
- Enhanced dynamic behaviour of the rotor, especially during changes of the rotation speed.
- Suppression of the tendency for skidding (Fig. "Deterioration by cage slipping so called skidding" and Fig. "Skidding failure modes at races").
- Bearing rings are cooled from a, design depending, sufficient oil flow.
There are also some disadvantages and potential
problems:
Fretting wear: The function caused relative movement of the outer bearing ring against the
supporting structure can develop fretting at sealing and contact surfaces. This is especially serious for a
direct contact between titanium alloys and the bearing ring from
steel (volume 2, Ill. 6.2-16 and Ill. 6.2-17). Is the oil film
„penetrated” under high radial forces, fretting wear also forms in the
circumferential region.
Cavitation is a sort of material fatigue in connection with the formation of vapour bubbles
in the oil (volume 1, Ill. 5.3.1-11.2). The radial
amplitudes of the bearing outer ring lead
inside the oilgap to heating and locally high pressure fluctuations. In the phase of the pressure drop
the formation of vapour bubbles occurs. Those implode in the pressure phase and deteriorate
the material surface. Cavitation is promoted by
oil contaminations as water or fuel (Ill.
22.3.3.2.1-1). Expecially dampers without elastic
centering tend to cavitation.
Changes of the friction conditions: Is the oil film sealed from the side surfaces, arises
during the relative movement an additional friction
damping. In such cases it is understandable,
that the function of this system also is governed from the acting
tribological system. So can changes like a
wear coating as repair have astonishing negative consequences. Therefore such
measures/remedies outside the instructions in the manual require a
proving with the OEM.
For civil applications wth its typical long operation periods, radial
tight piston rings are used (sketch below right). Its leakage guarantees a cooling oil flow. An additional damping effect
has the friction of the piston rings.
Heating of the oil by absorbing damping
energy leads to the warming of the oil film.
However, this film thould also act cooling at the bearing. With the oil temperature, the risk of
cavitation increases (passage before). If the oil temperatures rise very high, an
accelerated aging of the oil occurs (chapter 22.3.1 and chapter 22.3.2).
Fractures of the struts from the elastic suspension
(squirrel cage) can occur during
unnormal high shock loads (forced fractures) or dynamic circumferential forces (fatigue).
Skidding (Fig. "Deterioration by cage slipping so called skidding") or unbalances
trigger high dynamic friction forces in the bearing, when it comes
to the break through of the lubrication
film, Extreme unbalances can overload bearings with
a shock like circumferential force. Than the struts break in a
forced fracture mode.
Fracture of the fixing lugs: Dampings without elastic reset take the circumferential forces of
the bearing outer ring with lugs, which slide in flutes. Extreme
unbalances can penetrate the oil film on the races. Thereby high shock like circumferential loads occur. With this, the lugs can
crack or break out (Fig. "Bearing fractures by shock loads"), up to the fracture of the outer bearing ring.
Worse detectability of failures caused from unsuitable at the casing positioned acceleration
pick ups: Vibrations are monitored at modern aeroengines with ascceleration sensors, which are fixed at
the casings (Fig. "Condition indicator using vibration sensors"). A damped bearing, from experience can make it difficult (Fig. "Oil dampened roller bearing vibration") to
register „lesser“, however for the rotor components (e.g., fatigue of the bearings) dangerous unbalances.
This concerns also the partial fracture of a turbine rotor
blade.
Abrasion: Damping systems without elastic resetting
let the rotor sink about the thickness of the
oil film (0,1-0,5 mm), as a result of the declining oil pressure during shut down of the engine. This
seems indeed at the first sight little, but can markedly effect
the tip gap of the blades (rubbing) and
at labyrinth leaks (leakage of the oil during stand still)
during start.
Fig. "Stresses between rolling elements and race" (Lit. 23.1.1-5 up to Lit. 23.1.1-9): The
friction in a non friction bearing, influences the
stress distribution inside the races. Increases the friction coefficient
between rolling element and race/ring caused by mixed friction (e.g., during cage slipping =
skidding, Fig. "Deterioration by cage slipping so called skidding" and Fig. "Skidding failure modes at races"), the subsurface
failure effective stress maximum from tension and shear dislocates to the surface (sketch above).
The lower diagram shows the stress distribution perpendicular to the surface. It applies
to hydrodynamic lubrication (Fig. "Micropittings and life time") and
mixed friction. During the mixed friction the high stress maximum can be identified at a locally, very narrow contact point.
With this, also the deteriorating effect of foreigen
objects/particles or damages of the race
(e.g., indentations with `bell mouth', fusion craters) gets understandable. In its area
fatigue pittings form and with this the bearing failure.
Fig. "Fatigue pittings at bearings" (Lit. 23.1.1-9, Lit. 23.1.1-10 and Lit 23.1.1-15): The
„normal” lifetime limiting failure
at anti friction bearings are break outs ( fatigue pits/pittings, detail left) on the races (sketch above).
They are caused of vibration fatigue due to rolling
contact. Its expansion takes place in rolling direction
of the rolling elements. The origin of the
cracking is usually located in the highest stressed zone
below the pitch surface/race (Fig. "Stresses between rolling elements and race"). Under dynamic overload (e.g., unbalances), serve the material
specific weak points (volume 1, Ill. 3-1)as crack starter. Under normal/design according service loads the
early origin of fatigue cracks (Fig. "Reduction of bearing lifetime by particles") is located at
damages of the races/pitch surfaces.
Concerned are corrosion pits, foreigen objects, respectively its indentations or other
deteriorations like fusion craters (electric arc) and deterioration by brinelling (Ill.
23.1.1-12).
So the fatigue of the race is rather a consequence but not a cause
of a bearing failure. Because of this, bearings with corrosion pits must be scrapped
during overhaul. Therefore corrosion is the
most frequent cause for the scrapping of bearings (Lit. 23.1.1-21). If a
metallographic cross section is taken in circumferential direction perpendicular to the race (sketch below right),
difficult etching zones (white etching areas = WEAs)
at the crack origin can be found. Because of its geometry, they are also called
butterflies, though this is not the only mode (Lit. 23.1.1-15). Obviously they are in connection with a change
in the material structure, caused by extreme heating
(up to softening) in the micro region under the dynamic load. WEAs may apply as
signs of dangerous high dynamic loads. Its hardness is above this of the base material. This can
be explained with a fast cooling from high temperatures (new hardening). The frequency of the
WEA depends from load and time. It is about an
irreversible material change/deterioration by
fatigue.
Are there already break outs/pittings, the failure will accelerate. Thereby the notches and spalled
race particles act as foreign objects (Fig. "Reduction of bearing lifetime by particles"). In spite of this, the failure propagation is in the most
cases relatively slow. So it is possible, to identify with sensors (magnet plugs, magnet sondes, chapter
22.3.4) in the oil circuit sufficient early a catastrophic failure of the component. The experience shows.
that merely bearings of small, very high speed
aeroengines (helicopter engines, APUs), develop
failures too fast, so that they can not be intercepted.
Fig. "Causes for fatigue at races", -5.2 (Lit. 23.1.1-10 ): The
fatigue of races from anti friction bearings
depends from very many influences, which can also combine. In spite of the offer of systematic specialist literature
it is not easy to suggest, sufficient certainfrom the failure mode/appearance of a bearing at the
causative influences of a fatigue. This is further aggravated from
secondary failures (e.g., roll overs),
which have changed the informative beginning/primary failure.
The summary shall give an impression of the
variety possible failure relevant
influences without claiming completeness.
Material (Lit. 23.1.1-21): In the bearings
of aeroengines the fatigue strength/
rolling fatigue strength and/or wear (during
mixed friction like in the case of skidding), is the
life governing role. As main cause for the
exchange of bearings during overhaul, the
expert literature however mentions corrosion
damages of the races. But there is no single optimal material property for all service influences.
The experience shows, that fatigue failures of aeroengine bearings
rather are in connection with race
deteriorations. Less frequent is fatigue at coarse impurities in the material structure. Therefore
high rolling fatigue strength demands especially for bearings of aeroengines, which usually run at
EHD conditions, an insensitivity as high as possible against particle
indentations (Lit. 23.1.1-23). For this is, contrary to bearings with high hertzian compression of the usual machine engineering (Lit.
23.1.1-6), a little less hardness in favour of a better
ductility is more beneficial. So the notch effect can
be lowered by plastic deformation. The slightly lower hardness also leads to a
slower growth of the fatigue cracks. This increases the chance, to prevent a catastrophic bearing failure (Ill. 23.1-5.2). A
disadvantage of lower hardness is a higher sensitivity for `brinelling'
(Fig. "True and false brinelling") and wear/abrasion at
mixed friction.
Fatigue processes at surfaces/races of of rolling faces
(Fig. "Mechanisms of rolling wear") may be the reason for the recommended
hardness in the range of 62-64 HRc (Lit. 23.1.1-28).
Also abrasive wear can be minimized with a hardness of the race as high as
possible.
In contrast adhesive wear (galling/seizing) is less influenced from the hardness. This, for
example, occurs during overload of the
bearing with a break through of the oil film or
during lack of lubricant.
For the rollig fatigue strength, according to the
design, the cleanliness of the bearing
material is of highest importance (Fig. "Improvement of bearing materials"). Good fatigue properties demand a fine and uniform
material structure. Unfortunately this can be only difficult realized with
corrosion insensitive bearing materials. Here larger Cr
carbides disturb, which are traced back to the addition of corrosion protecting chromium.
This dilemma seems to be solvable with highly nitridated bearing
steels.
Gear shafts in auxilary gears exist, at which
integral bearing race rings come to application
(Ill. 23.2-3). For this the inner ring is joined with the shaft by electron beam welding or friction welding.
A sufficient hardness of the race is realized with
case hardening (Fig. "Improvement of bearing materials").
Influence of dimension and shape: Good measurable, even if
requirements for very tight tolerance
and low roughness guarantee service properties, according to the design. Perhaps therefore, there
are no reports about failures caused by dimensional production deviances. However, it is absolutely
possible, that the combination of shape and measure variations inside the prescribed tolerances
trigger failures (Fig. "Unbalance of rollers in bearings" and Fig. "Unbalance of forged balls"). Thereby
dynamic instabilities of the roller
movement are of importance (flutter/ weaving, Fig. "Oscillation of the rollers sc skewing weaving").
An elastic deformation of the bearing
rings is possible by the seat, as a result of stiffness differences
at the circumference or distortion during service. But those obviously are controlled by dimensioning
and design. To prevent skidding (Fig. "Deterioration by cage slipping so called skidding"), the
outer ring is elastic deformed (oval, trisectioned,
Fig. "Avoidubg skidding with oval race tracks"). With testing it must be proved, that locally mixed friction can not occur and damage
the race.
Important is the control of unbalances of the rolling elements (Fig. "Unbalance of rollers in bearings", Fig. "Unbalance of forged balls" and
Fig. "Forces and moments inside a bearing") and of the cage (Fig. "Bearing behaviour by guidance of the cage").
Deteriorations during operation are frequently traced back at aeroengines to
foreign objects /particles in the oil (chapter 22.3.3.1). To this belong auxilary materials like
blasting grit/shot (Fig. "Ol filter helping for diagnistics").
Further potential causes for the deterioration of
races:
- Abrasive and adhesive wear because of skidding (Fig. "Deterioration by cage slipping so called skidding").
- Brinelling as result of vibrations during stand still (Fig. "True and false brinelling").
- Deterioration of the cage and the races by Rollerweaving (flutter, Fig. "Oscillation of the rollers sc skewing weaving").
- Lightning strike (Fig. "Bearing failure by lightning strike" and volume 1, Ill. 5.1.3-4.1).
- Electrical circuit from the generator (micro arcs, Fig. "Bearing failure by electric continuity").
Assembly, repair and transport can deteriorate anti friction bearings in different ways:
Plastic deformation of the bearing during the assembly process (Fig. "Critical joining of big engine modules 2").
Brinelling during transport (Fig. "Causes of brielling on bearings" and volume 4, Ill. 18-10).
Design/dimensioning: Here are unexpected axial
loads at thrust bearings to mention Concerned
can be too high or too los loads. They are in connection with unusual gaps, respectively lekages of the
air seals. These disturb the balance of the design conform axial forces (piston forces, volume 2, Ill.
7.2.1-2).
Was a unsuitable cage guidance/lubrication
choosen (Fig. "Bearing behaviour by guidance of the cage" ), this can lead under
certain circumstances to an almost spontaneous destruction of the
bearing.
Too weak cage material or riveted cages (Fig. "Forces and moments inside a bearing" and Fig. "Oscillation of the rollers sc skewing weaving") are especially sensitive
for unexpected load changes (e.g., unbalances, increased forces of the rolling elements).
Oil problems are deeper discussed in chapter 22.3. These are great challenge, especially for bearings
of aeroengines with ecxtreme circumferential velocities and temperatures.
Fig. "Micropittings and life time" (Lit. 23.1.1-10 and Lit. 23.1.1-18): For roll off surfaces in an oil three different
lubrication conditions are known.:
At hydrodynamic lubriaction the lubricating film about 2µ thick is sufficient, to fully separate
the roll off surfaces. During this pressures of several thousand bar develop in the lubrication film.
Thereby no noteworthy elastic deformation of the
surfaces will occur. However the high shear forces in
the lubrication film produce much heat. It heats the lubrication film and so promotes the aging
(chapter 22.3).
Boundary lubrication/mixed friction has a 0,001-0,05µm thickness of the lubrication film. A
touch of the roughness tips from the pitch surfaces is not avoided. This condition can be expected at
low rotation speeds during start and shut
down. In this case the lubrication is determined from
chemical and physical properties of the lubricant, as well as from the wetted
surfaces. Here the viscosity is not of significance.
Predominantly at bearings of aeroengines is the so called elastohydrodynamic lubrication (=EHL). The thickness of the lubricant film lays here in range of 0,05-2,0µm. The pressures in the
lubrication gap are with about 20 000 bar extremely high. This is sufficient for
markedly elastic deformations of the pitch surfaces (see marked region in the upper sketch). With this a
lifetime relevant fatigue load of the races
develops. The viscosity of the oil (no Newtonian fluid) markedly
increases by the pressure. This improves the bearing strength of the lubrication film.
In the range of the roughness tips, where material typical
hard structure components act (sketch above), it comes to peak stress under EHL-conditions (extreme pressurese, high oil viscosity).
Thereby so called running-in pittings (Fig. "Mechanisms of rolling wear") in the size of some 'µm' can form (detail below left).
For the lifetime of the bearing, the thickness of the oil film
h0 and the accumulated roughness
of both opposing surfaces respectively its ratio S (detail below right) are of importance (Fig. "Influence of lubrication gap at lifetime").
Does it come in case of boundary lubrication (low rotation speeds during start and shut off, overload
of the bearing) to the contact of the roughness
tips of the pitch surfaces, the deteriorating effect can
be compared with the bridging by contamination
particles (Fig. "Influence of lubrication gap at lifetime").
Fig. "Mechanisms of rolling wear" (Lit. 23.1.1-10 , 23.1.1-16 and Lit. 23.1.1-17): The high magnifications of today
usual SEM investigations (= Scanning Electron Microscopy, volume 4, Ill. 17.3.2-7) make the
phenomenom assessable. In contrast, photo-optical misinterpretations and a false evaluation of the failure
relevance are rather probable.
Minimum lubrication thickness leads at tiny roughness
tips („A“) after many roll-overs, to
normal microscopic wear of the race. Such a roughness is typical for grinded and polished races of anti
friction bearings. This wear does not influence the design life time. It shows as tiny fatigue break outs in
the surface region. If not deeper cracks occur we speak about
run in pittings.
During this mechanism, first the roughness tips are
plastically deformed to a layer in the
µm-range („B”). This work-hardened zone covers the structure of the base material with its typical fine
dispersed carbides, necessary for the function.
Rises the load and/or decreases the thickness of the lubricant film (Fig. "Micropittings and life time"),
the strain hardened layer separates („C“).
Micro-fatigue cracks form, during the direct contact with the
carbides, which cause the development of further break-outs in the size of few µm („D”). However these
microspalls (micropittings) don't cause in this run-in period larger, dangerous fatigue break-outs (fatigue
pittings, Fig. "Fatigue pittings at bearings").
At high speed roller bearings and very low unbalances, the danger exists that the
rolling motion passes into a sliding motion
(slip, Fig. "Influence of lubrication gap at lifetime"). Thereby the cage is decelerated
(cage slip, skidding , Ill. 23.1-14.1). This can lead up to the short time standstill of the cage. Thereby, at the beginning
the mentioned surface symtoms arise. Increasing this effect, a markedly lifetime reducing deterioration µm thin plane particles of several tenth millimeter size can develop.
Fig. "Influence of lubrication gap at lifetime" (Lit. 23.1.1-25 ): With
EHL-lubrication (Fig. "Micropittings and life time") the lifetime of an
anti friction bearng is in relation with the roughness of the
race (diagram above left).
We see, that the lifetime of roller bearings reacts especially susceptible on the
roughness. Roller bearings with the typicaql larger lubricat on gap surfaces, compared with the ball bearings, reach the
maximum lifetime already above2 µm lubrication film thickness. Obviously
ball bearings reach this condition only at much thicker lubrication films.
The diagram above right shows the influence of the
lubrication gap on the lifetime of a roller
bearing. A wideness of the lubrication gap, which correlates the double roughness
„h0“ (S =2,0),
enables maximum lifetime. This optimal thickness of the lubrication gap is determined by the
bearing clearance. So it must be considered during design and production.
Occurs in the lubrication gap of a roller bearing
skidding (e.g. during cage slip) between the
rolling surfaces, withn a breach of the oil film, „S” approximates 0. With this in correlation to the example
in the diagram below left, the lifetime drops by the factor
100.
To avoid skidding of the cage, minimum
friction between the rolling surfaces is necessary. It
must guarantee the impellent of the cage, to overcome the resistance of the oil film against the friction of
the rolling elements and the cage (Fig. "Influences at cage slip"). So, to avoid slip, in correlation to the diagram
below right a minimum friction coefficient respectively traction coefficient is necessary. Understandably
this is for a narrow lubrication gap (S =0,5) much higher and is reached markedly sooner than for a
wide gap (S = 2,0). A minimum unbalance can be enough to prevent slip/skidding.
Fig. "Reduction of bearing lifetime by particles" (Lit. 23.1.1-7): In aeroengines,
particles in the oil must be expected. So the typical
high temperatures promote coke formation (chapter 22.3.2). Additionally contaminations of different
origins can appear in the oil (chapter 22.3.3.1). Particles become
failure effective, if they are thicker than the bearing oil film
(Fig. "Micropittings and life time"). The thickness of the lubrication film under EHL conditions is in
the range of 0,05 -2,0 µm (Fig. "Influence of lubrication gap at lifetime"). In contrast a human hair is about 100 times thicker (sketch
above left).
Does a dangerous particle (size, hardness) get between the races and rolling elements,
in every raceway an indentation forms (sketch above right). Typical is a
ring shaped bulging around the
indentatation. This can break through the lubrication
film. Mostly particles or its fragments are centrifuged
or washed away. However, in some cases at least particle
fragments got stuck in the raceway. At
beginning failures they allow an
identification. This is the precondition for targeted, prevention of
such contaminations.
Later the bulge will be plastically
flattenend by rolling.
The bulge can be considered as the main cause for failures of
antifriction bearings. The metallic contact disturbs the rolling cinematic and triggers sliding effects as well as stress peaks (Ill.
23.1.1-8). After some time from them a fatigue failure will develop (sketch below right). A
shortening of the lifetime, up to a factor 1000
must be expected.
This failure effectivity of the bulge serves as justification for a
polishing rework of the races. Tests showed: Are the bulges polished away, in spite of this the indentations will remain,
the lifetime can be increased again about the factor 10-100. Naturally such a regeneration effect can be only used, if
not already a markedly fatigue deterioration has occurred. To evaluate this is a problem which can not
be underestimated. This may be the cause, why
repolishing, if at all, can only be recommended for,
from experience known sufficient low loaded, used
bearings (e.g., in gears). Naturally such a rework
seems especially for the expensive main
bearings lukcrative. Basically rework must be carried out
only according to the manual respectively
instructions.
Note: The repolishing of the races, if necessary from used anti friction bearings, must be close to the specifications/instructions, respectively the manual. This appies as well for the process as also for the bearings (location of the application, type of the bearing).
Fig. "Unbalance of rollers in bearings", Fig. "Unbalance of forged balls" (Lit. 23.1.1-8, Lit. 23.1.1-27 and Lit. 23.1.1-31): Demands for higher
performance concentration and higher pressure ratios with as few compressor stages as possible, cause
always higher rotorspeeds (Fig. "Tendency of bearing speeds"). This trend affects the aeroengine bearings. This high-speed
(diagramm right) with according high
dm x n values (dm = diameter of the pitch circle from the center
of the rollers) leads to special effects. Also little, in the usual machine engineering, unnoticed
unbalances of the rollers (100 mg.mm
are considered as an acceptable limit), now get failure effective. The
rolling elements itself reach with this rotation speeds around their own axis in the range of 100 000
rpm. Because of this, for aeroengines the unbalance of the rolling elements is limited/specified and
checked for every single one. Unbalances can be caused by little summarizing
inhomogenties of the material structure
(Fig. "Unbalance of forged balls", sketch above) and geometrical unbalances
respectively dimensional deviations
within the specified tolerances (so no failure!). To this belong especially the
edges of the rollers, which are also changed by wear during service (Fig. "Oscillation of the rollers sc skewing weaving").
Unbalances of cylinder roller bearings: Under a
static unbalance (frame above right), a
symmetric dual mass unbalance at the roller axis in the
resting condition is understood. The masses can
be positoned at the same side or 180° offset. The static unbalance does not directly affect the
operation behaviour of the bearing. However it can influence corrosion during stand still, at the contact
surfaces of the rolling elements.
Of high importance is a dynamic unbalance during
operation. It can trigger high loads at the edges
of the rollers and flutter movements
(skewing, weaving) around a radial axis (Fig. "Oscillation of the rollers sc skewing weaving"). Because
of nonuniform load distribution, rollerweaving can cause high stresses at the contact surfaces to
the races. Thereby the roller edges rub increasingly at the
skirt of the bearing ring and the edges of
the cage pockets. This leads to relatively high friction forces with a
brake effect at the cage. The increased driving power at the cage, needed for slip free run, must be delivered from the rollers in the
circumferential region of the load transfer. This causes
high shear stresses at the load transferring rolling
surfaces. Is such a penetration of the lubrucation film triggered, it comes to
extremely local bearing temperatures and adhesive
wear. The consequence is a high material stress with markedly shortened life time.
Are radial loads too small for the drive forces of slipping rollers, skidding will occur (Fig. "Deterioration by cage slipping so called skidding" and
Fig. "Skidding failure modes at races"). In an extreme case the cage will
stop for a short time. In this time period the anti
friction bearing functions as a friction bearing.
Dynamic unbalances of the balls (sketch below in Fig. "Unbalance of forged balls") are also dengerous. A ball
should find for every revolurion a new race track. The corresponding pattern of the race track is called
„ball of wool effekt“. However an unbalance can cause a stabilisation of the axis of rotation. Then the
ball rotates aroud its axis of inertia. The most frequent overruns in the new fixed track shorten the
fatigue lifetime during a adequate high load. This can be an explanation for
the fatigue failure of a single ball in a bearing.
So the chance of a failure clarification with a microscopic
follow-up investigatiion of a not too badly
damaged ball surface exists. This chance should be given after test runs or certification runs of
bearings and can point at unbalance problems.
The unbalances of a ball are caused by density deviations from enrichments of alloy
elements/segregations, a special orientation of the material structure
(sketch above in Fig. "Unbalance of forged balls") as result of the
forging process for the ball shape, or other inhomogenities of the material structure.
Fig. "Improvement of bearing materials" (Lit. 23.1.1-28): There are
two main groups of bearing materials in aeroengines.
Through hardened, which are especially used in main bearings.
Case haredned materials are used in smaller bearings of gears. These are even in some cases an integral element (Fig. "Failures of gear wheels") of gear shafts.
To reach the material pureness necessary for a sufficient fatigue strength, the
melting must take place in the vacuum (`V…' processes in the diagram). Indeed, such materials show no contaminations.
But under very high dynamic loads (specified, i.e. weak points),
inhomogenities like carbides determine the designed lifetime. Then they are the origin of fatigue failures.
Generally a historical trend to higher fatigue lifetimes can be noticed.
In both cases, the minimum hardness of the rolling surfaces from a bearing is abbout 58 HRc
(Fig. "Influence of beariring material hardness").
Through hardened materials have been developed for
aeroengine main bearings in the direction
to high service temperatures. Concerned are alloys with molybdenum, tungsten, chromium,
vanadium, cobalt, aluminium and silicium, which enable sufficient hardness. A representative of this type is `M-50'
with 0,8% C, 4,0% Cr, 4,25% Mo for survice temperatures up to
315°C. Indeed the lifetime of the bearing rises at elevated operating temperatures, compared with lower alloyed materials. However,
at lower service temperatures the bearing life time drops
with the amount of alloy components (Fig. "Fatigue lifetime of bearing materials", Lit. 23.1.1-32).
In the last decades, primarily improvements have been achieved with
material structure optimizations like grain orientation and alloying. To this belongs a residual austenite under 3% .
For the use in corrosive atmosphere, high chromium contenting
materials like`440C' with 1%C and 17%Cr are accessed. But this `corrosion -resistant' material (diagram) can only be used up to
about 170°C. It also shows a weakness in the fatigue
strength.
Even more corrosion-resistant bearing
materials can be expected from highly nitridated Cr
alloys (e.g., 15%Cr, 0,35%N, 1%Mo; Lit. 23.1.1-21). These show no weakness of the fatigue lifetime
(Lit. 23.1.1-21).
Case hardened materials usually have a carburised hardening zone of > 0,4 mm thickness. Its
hardness is in the range between 58 and 63 HRc. The core hardness lies under 48 HRc. They have a
service temperature limit of about
170°C. From the high impact strength and fatigue strength is
expected. This is especially interresting for parts with loads from outside (shafts). So these materials are
predestined for the use in auxilary gears.
Fig. "True and false brinelling" (Lit. 23.1.1-28, Lit. 23.1.1-29 and Lit. 23.1.1-30): During stand still anti friction
bearings can be deteriorated by vibrations. This is called
„brinelling”. Such vibrations primarily occur
during the transport of the whole aeroengine or its modules (Fig. "Causes of brielling on bearings"). Because the, during service
existing separating, damping oil film is displaced, during
stand still the rolling elements under pressure of
the rotor weight or a mass force get in direct
contact with the race rings. So the not damped
impact forces and micro relative movements act wearing (fretting).
We distinguish two variants:
'True brinelling' (upper frame) is a race deterioration at which the force transferring rolling
elements produce plastic deformations in the race of the bearing ring. They require a
lifting and pitching of the rolling
elements. Such overloads during stand still, can be expected from shocks like shunting
of wagons, vibration caused by rail joints or road holes. Are assembly devices with modules or
aeroengines moved over an uneven hall floor (e.g., contact faces of concrete slabs), the danger of brinelling
exists. Obviously also during ultrasonic cleaning, true brinelling was observed (Lit. 23.1.1-16).
`False Brinelling' (frame below) is an unevenness of the race at the contact zone of the rolling
elements, caused by wear (fretting). They are the result of micro movements, caused from vibrations. During
this process the rolling elements don't lift
off. This deterioration does not require vibration
forces, corresponding the true brinelling. A `normal' transport or vibrations during the cleaning process
(acting of ultrasonic sound, volume 4, Ill. 16.2.2.5-7.1) are sufficient.
Here the extreme case of standing contact
fatigue (= SCF) should be mentioned. In this case a
dynamic load produces through a contacting ball ring shaped fatigue
cracks. This load is used in test devices for materials, especially of case hardened surfaces.
Fig. "Causes of brielling on bearings": Vibrations can cause true brinelling (Fig. "True and false brinelling") during the transport of not suitable supported aeroengines or unsufficient tensioned rotors. From experience, such deteriorations trigger, especially on small aeroengines with typical high speed rotors (e.g., APU, helicopter engine) already during start and run up catastrophic failures.
Fig. "Deterioration by cage slipping so called skidding" (Lit. 23.1.1-10, Lit. 23.1.1-20, Lit. 23.1.1-25, Lit. 23.1.1-26 and Lit.
23.1.1-32): Cage slippage
(skidding) primarily occurs at
roller bearings. But there are also single cases, when
this phenomenon concerns ball bearings. During skidding, the rotation speed of the cage is slower than
the roll off of the rolling elements would require. So there are no clean kinematic conditions.
Therefore sliding (slippage) of the roller elements
on the race occurs. In an extreme case, the cage stands
still and the bearing acts as a friction
bearing.
The conditions for skidding are given, when the driving forces are not sufficient to equalise fhe
braking forces which act on the cage (friction on the guiding faces, and the cage pockets). This situation
can have several causes:
- High hydrodynamic friction between guiding surface of the cage and bearing ring (outboard guidance, Fig. "Bearing behaviour by guidance of the cage").
- High mechanical friction in the guidance of the cage due to unsufficient lubrication or too high cage temperature during outboard guidance (clamping).
- At too low radial load (Fig. "Influences at cage slip") the driving forces on the rollers are not sufficient. This is the case without the required minimum unbalance.
- High friction in the cage pockets. This can also arise at ball bearings, e.g., with thick silver sliding cooatings (shaping).
- Weaving respectively flutter of rollers (skewing, Fig. "Oscillation of the rollers sc skewing weaving"). Thereby a contact between the rollers, the skirts of the bearing ring and the cage pocketds act with high brake forces at the cage.Because the centrifugal force of the rolling elements acts additionally against the contact pressing force at the inner ring, this is especially endangered from skidding failures.
The slipping rollers are extremely accelerated
in the load transferring zone, during thre break
through of the lubrication film (details below). The metallic contact at the face to the race ring takes
place under high relative velocity. Thereby weldings
(galling, seizing) occur, plastic
deformations (detail above) and
overheatings. At race rings and rollers forms a typical
„dart pattern“ which grows over the circumference into extensive rough deteriorated areas (Fig. "Skidding failure modes at races").
The driving forces pulsating with the circulation of the rollers, cause
high stresses in the cage pockets (Fig. "Forces and moments inside a bearing"). The result is heavy
wear/abrasion and fractures of the
bars/lands.
As remedy against skidding serve measures, which guarantee every time
sufficient radial forces. Usually this is a sufficient minimum unbalance. In especially critical cases, slight
elastic deformations (e.g., ovalisation)
of the outer bearing ring (Fig. "Avoidubg skidding with oval race tracks") can be used.
Fig. "Influences at cage slip" (Lit. 23.1.1-32): This schematic diagram shows the dependence of the cage slip (skidding) from the radial load of the bearing. These are the driving forces of the cage. The necessity of a minimum load can be seen . The slip rises with the rotation speed. This is explainable on the one hand with increased hydrodynamic friction forces, which act on the cage, on the other hand also the centrifugal forces may become noticeable. These add at high circumferential speeds remarkedly to the decrease of the contact pressure at the inner ring.
Fig. "Skidding failure modes at races" (Lit. 23.1.1-10, Lit. 23.1.1-16, Lit. 23.1.1-20, Lit. 23.1.1-32 and Lit.
23.1.1-33): Failures caused by cage slip (skidding) have in the development phase a typical
appearance. Dartlike dull zones form (sketch left). These are more rough than the unhurt race surface. In
the micro range, with the help of the SEM evidence for a deterioration from the contact of
the metallic surfaces under high relative velocity can be identified. Concerned are flat
micro beak-outs (microspalls, Fig. "Mechanisms of rolling wear"),
microcracking and plastic deformed regions
(smeared grinding structure).
In the advanced stadium, the dull structures at the circumference grow to circumferential
ring areas (sketch right), till they cover large areas of the bearing ring race (mostly the innwer
ring, Fig. "Deterioration by cage slipping so called skidding").
At the extension of the skidding deterioration small tongues
(„streamers”) can be identified. They follow the usual fine machining marks (Fig. "Mechanisms of rolling wear"). This appearance can be seen as
an affirmation of the described failure mechanism.
Fig. "Bearing fractures by shock loads" : During suddenly occurring unusual intense unbalances (Fig. "Operation influennces of main bearings") like:
- the centrifuging of a rotorblade (sketch below) or of a rotor fragment (e.g., containment case, Ill. 2, chapter 8.2).
- Extreme rub processes or compressor surge (volume 3, Ill. 11.2.1.2-1), it can come to shock loads on the bearing.
For a forced overload of the bearing two effects may get effective:
- The penetration of the damping film, if a damped bearing is concerned, can elastically deform the outer ring oval. Also the lubrication film can be penetrated. Then a local metallic contact between the rolling elements and the bearing rings occurs. So high circumferential forces act at the roller elements and with this, at the cage and the bearing outer ring.
- The elastic bending of the shaft and with this, the deflection of the axis of the inner, ring can cause the tilting of the rolling elements contact with the race. This triggers a sudden skewing of the rolling elements with a jamming effect (Fig. "Oscillation of the rollers sc skewing weaving"). Such an abrupt breaking/deceleration of the cage and the outer ring is similar to an overrunning clutch.
From experience, damped supported anti friction bearings (Fig. "Damped main bearings") without elastic
anti-rotation device, show after such an incident
forced failures. To these belongs (sketch above)
- crack formation in notch endangered regions of the outer ring, like the transition of the fixing lugs to the outer ring.
- Fracture of the lugs.
- Fracture of the cage, respectively the lands/bars of the cage.
In such a case, the lands of the elastic
fixing of a dampened bearing are highly endangered by
a forced fracture.
Fig. "Bearing behaviour by guidance of the cage" (Lit. 23.1.1-34 up to -36): For the operation behavior of a high speed
anti friction bearing, the type of the radial cage
guidence is of special interrest.
At the circumferential surface (bord), which serves the guidence of the cage,
friction heat is procduced in the oil film and/or during mixed friction in direct metallic
contact. This leads to heating and thermal expansion of the
cage. It heats the cage, especially at a local sliding contact. The expansion, limited at a fraction of the circumference,
triggers unbalances.
An inbord guidance hinders by centrifuging the
supply of lubrication oil to the sliding surfaces of the cage. The heating expands the
cage and so it takes off. This widening of the gap improves with an increasing oil entrance the cooling. At the same time the
sliding surface, which must divert the friction heat, gets smaller. This acts stabilising at the
cage temperature. Adversely is a worsened
guidance, which causes an increasing
unbalance. This can locally overload the
cage.
Outbord guided cages don't get unbalanced, even during heating.
The lubrication is promoted by the centrifugal forces and presses oil from the race
into the lubrication gap. However, the centrifugal forces incease the friction forces
and with this the heating. This leads to thermal
expansion with the increase of the diameter and so the slow down of the cage, up to jamming during stand still. With this it can
be expected, that bearings with outbord guided cage are also more susceptible for cage
slip (skidding, Fig. "Deterioration by cage slipping so called skidding"). The increase of the friction forces is interactive
connected with equivalent heat procuction. It comes to the deformation of the cage and high
local loads. With the friction force on the cage, the necessary
driving forces, which act from the rolling elements increase. This causes in the
cage pockets high forces (Fig. "Wear loaded sliding surfaces in bearings") and friction heat.
Fig. "Forces and moments inside a bearing" (Lit. 23.1.1-35 and Lit. 23.1.1-37): The sketches above show a summary of the operation forces on the cage and the rollers. This gives an impression of their complex interaction. In detail the following forces/loads and its causes are concerned:
- At the inner and outer race rings, elastohydrodynamic forces (EHL, Fig. "Micropittings and life time") act at the roller.
- Centrifugal forces from the circulation in the center of gravity of the roller.
- Unbalances of the rollers (Fig. "Unbalance of rollers in bearings").
- Air drag of the rolling elements and the cage.
- Loads which are transterred from outside through the bearing rollers.
- Gravity of the rollers. This may rather be a stand still problem (Fig. "Unbalance of rollers in bearings"). Corrosion/condensate aroud the gap at the contact poit of the ball/roller.
- Circumferential orintated acceleration forces on rollers and balls (cage slip/skidding, Fig. "Deterioration by cage slipping so called skidding").
- Friction forces at the cage, which develop in the cage pockets, centering surfaces/guiding faces (Fig. "Bearing behaviour by guidance of the cage" and Fig. "Forces and moments inside a bearing") and by shear of the lubrication oil.
The forces act at the cage, rolling elements and race rings, whereat they influence each other. The oscillation of the balls, during passing the loaded circumference area (frame below), pumps dirt and aging products of the oil (chapter 22.3) between the two parts of a riveted cage. This can cause the expansion and loosening of the rivets up to their fracture.
Fig. "Oscillation of the rollers sc skewing weaving" (Lit. 23.1.1-26, Lit. 23.1.1-27 and Lit. 23.1.1-37): Under
roller skewing (gyration, weaving, flutter) a random circular movement is understood around an axis, which is not parallel to the
bearing axis. This leads to a load at the roller
ends/crowns with icreased wear at the roller
faces, the cage pockets and the bords of the race rings. In an extreme case, the cage pocket gets so heavily worn,
that the roller can rotate inside, fully around the radial axis (sketch in the middle).
We distinguish, accordant to the cause, the following types of roller skewing:
Misaligned skewing can already occur at a misalignment of 0,0002 mm/mm. Such
misalignments appear at not sufficient careful assembled shafts or during operation durig the flexing of the
shaft (unbalances).
Roller gyration skewing is caused by
unbalances of the rollers (Fig. "Unbalance of rollers in bearings"; frame below,
left sketch). Typical shape determined causes are:
- Wear of the edge radii/roller crowns.
- Deviation of the axis of the roller crown from the axis of the roller (frame below, sketch in the middle).
- The roller face is not sufficient rectangular to the bords of the race rings.
These influences must act diagonal at the opposite roller ends (frame below, left sketch).
Fig. "Intenal currents in bearings" (Lit. 23.1.1-41): It is known, that electrostatic and electromagnetic caused currents, especially in industrial used turbo-machines can trigger failures (Fig. "Electrically caused bearing failure"). Also aeroengines may have a potential for such problems. These effects can develop in two manners:
- Elektrostatic charge by friction of non conducting rotor surfaces like ceramic coatings (interstage rings/spacers) and/or plastic components (e.g., fan blading) with the gasstream (principle of the Van-de-Graaf-Generator).
- Elektromagnetic produced currents by a rotating magnetic field inside a metallic casing in which the rotor runs. Such conditions can exist at magnetised bearings, gears and shafts. Possible cause is a magnetic crack inspection without sufficient demagnitisation. Also electrical continuity `current flow' (pulsating) during lightning strike or unsuitable welding processes can magetise components. Electromagnetic produced currents can also originate from startergenerators of the aeroengines. During malfunction dangerous currents can emanate from them (Fig. "Bearing failure by electric continuity").
This occurs without , eye-catching syptoms at the
outside. The electric voltages between rotor
and casing, respectively the suspension, get only
alarming above a certain limit. It is very machine
individual and depends on many influences. In such a case, only the OEM if at all, can give an advice.
Experience (without engagement):
- Voltages below 1 Volt are uncritical.
- At voltages above 5 Volt bearing failures must be expected.
- Voltages above 20 Volt, trigger also gear failures and clutch/coupling failures.
With targeted voltage measurements (oscilloscope) at rotors, conclusions can be drawn if there
is suspicion. Measurements have to be carried out at every single system which has a coupling
(e.g., spline coupling). Thereby it is assumpted, that a current circuit is not always guaranteed. If there
is accessibility, a suitable metal brush, like it is used in in mechanical rotating transducers
(collector ring), can serve as probe/sensor.
The waveform of the voltage can enable conclusions at the cause.
Voltage peaks let evaluate the danger.
Electrostatic shows sharp rectified voltage peaks in constant time periods. The signal depends
from service conditons like pressure and temperature.
Electromagnetic produced voltages show a much more regular wave form. The frequencies can
be assigned the harmonics/natural frequencies of the shaft rotation
speeds. From experience here exist no comparable dependence of the electrostatic effects from the operation conditions. Potential
results of circuit continuity are
overheating/weld puddles from electric sparks at bearing races, gear
teeth flanks and coupling faces. There was for the author no literature available about the endangering
of the functions from always more frequent used
electric components at aeroengines. However, it can
be supposed, that unsufficient protected control units and sensors can react sensitive, respectively
are endangered.
Fig. "Bearing failure by lightning strike" (Lit. 23.1.1-11 and Lit. 23.1.1-12): Lightning strike represents a danger, especially for turboprop engines (volume 1, Ill. 5.1.3-4). Concerned are especially antifriction bearings and friction bearings as well as gear tooth flanks in the propeller gear (sketch above). Typical feature is a series of small weld puddles respectively in the advanced condition, fatigue out breaks (pittings). The failure mechanism is shown in the frame below. For the existence of deteriorating electric sparks, respectively arcs, a separating oil film is necessary, which is penetrated by them in short time periods.
Fig. "Bearing behaviour by oil outage" (Lit. 23.1.1-36 and Lit. 23.1.1-37): A good sliding behaviour of the numerous sliding surfaces (Fig. "Forces and moments inside a bearing") from the cage of an antifriction bearing a silver plating provides. This is especially important for military aeroengines. Here, few minutes oil shut-offs are required. These consider hindered oilintake and oil hiding (Fig. "Oil shortage by oil hiding") during especial manoeuvres in flight (e.g., upside-down flight). For such extreme´flight conditions, former cage materials are no more sufficient (bronze with platings of lead and silver). Therefore today cages from steel with a 0,025-0,05 mm thick silver plating are used. Beyond expectations, tests have shown, that a thicker silver plating (0,1-0,2 mm, diagram) acts adverse. Reason is the total moulding of the ball at the cage land. It comes to smearing of the silver and high friction forces. Obviously no sufficient oil film can develop under such conditions. The decelerating of the balls prohibits a kinematic rolling and so triggers `skidding' (Fig. "Deterioration by cage slipping so called skidding"). Further consequences are an extreme cage temperature and the fracture of the cage.
Fig. "Magnetisation of bearings": Magnetised antifriction bearings can get in different ways failure effective.
- Through attracted steel chips, which deteriorate the races as foreign objects.
- Acting as generator and procucing currents which also deteriorate other components (Fig. "Intenal currents in bearings").
- Disturbance of electronics.To avoid such problems, it is necessary to identify the causes of the magnetisation.
Magnetic crack detection: If the necessary demagnetisation was imperfect, critical magnetic
fields will remain.
Lightning strike: Pulsating cocurrents magnetise the bearing (Fig. "Bearing failure by lightning strike").
Cocurrent flows caused from external currents like from welding. A further possibility is the
magnetising by magnetic fields of electric driven transport
vehicles. Therefore may an OEM explicit forbid
such transports.
Fig. "Electrically caused bearing failure" Lit. 23.1.1-42 op to Lit. 23.1.1-45): Electrical continuity is a big problem of bearings. The currents can be associated with external/parasitic currents from electric machines (motors, generator, starters, Fig. "Bearing failure by electric continuity"). But they can be also produced by rotating magetised components (gears, shafts, bearings, Fig. "Intenal currents in bearings"). The danger may rise with the concept of the so called „more electric engine“. Here the starter-generator sits on a main shaft (at two shaft engines the high pressure shaft) and is driven by it (sketch above). Thereby the generator power of bigger fan aeroengines can be up to some hundred kW. The accessory equipment is no more driven by a radial shaft (tower shaft), but electric. A power line seves as connection. So a conventional accessory gear lacks. This configuration has some advantages:
- Smaller face of the eroengine nacelle.
- More favourable pisitioning of the accesory equipment.
- Less maintenance effort.
Is alternating current with variable
frequencies concerned (variable-frequency drive = VFD),
what can be expected for the spectrum of the rotation speeds, an epecially high danger of electric
bearing deterioration exists. This is connected with the
voltage peaks of the electronic frequency control
(thyristors).
The increased introduction of plastic
components like rotorblades (fan) out of fibre reinforced
plastic, can promote the electric charging in the airstream. Does the discharge take place through the
bearings these are endangered.
Therefore is the knowledge of the typical failure
modes for current continuity
important (Fig. "Bearing failure by lightning strike").
'Frosting': This term comes from an macroscopic appearance of the failure zone, similar to
frost (sketch below left). It is used for different failure causes and failure mechanisms like rolling fatigue
(Fig. "Mechanisms of rolling wear"), circuit continuity or cavitation. To the naked eye the dull surface seems like dry
blasted. Concerned is the beginning phase of the deterioration. Under the elektron scanning microscope
(SEM) a multitude of tiny weld puddels can be seen. It is important not to confuse during
macroscopic evaluation this failure with rather harmless running-in pittings (Fig. "Mechanisms of rolling wear").
'Fluting': Applied is the so called
„ripple formation”, an advanced failure mode. It indicates
from the outside with intense vibrations. During the
elektroerosion (electric discharge), longitudinal
ribs have formed (flutes, sketch below right), which also are covered with tiny weld puddles.
References
23.1.1-1 I.E.Traeger, „Aircraft Gas Turbine Engine Technology, Second Edition“, Verlag :
Glencoe/McGraw-Hill 1994, ISBN 0-07-065158-2, page 559-562
23.1.1-2 „The Jet Engine”, Rolls-Royce.plc., ISBN 0-902121-2-35, Ausgabe 1996, page 81.
23.1.1-3 A.F.Storace, S.J.Cline, „NASA-General Electric Energy Efficient Engine, High Load
Squeeze Film Damper-System Analysis and Test Results“, Paper AIAA-84-1217 der AIAA/ASME
20th Joint Propulsion Conference, June 11-13, 1984/Cinncinnati, Ohio, page 1-9.
23.1.1-4 R.W.Shende, S.K.Sane, „Squeeze Film Damping for Aircraft Gas Turbines”,
Zeitschrift Def.Sci.J. (Defense Science Journal), Vol.38, No.4, October 1988, page 439-456.
23.1.1-5 H.K.Lorösch, „Die Lebensdauer des Wälzlagers bei unterschiedlichen Lasten und
Umweltbedingungen“. Zeitschrift „Wälzlagertechnik”, Heft 1981-1, page 17-21.
23.1.1-6 H.Schlicht, „Werkstoffeigenschaften, abgestimmt auf die tatsächlichen Beanspruchungen
im Wälzlager“, Zeitschrift „Wälzlagertechnik”, 1981-1, page 24-29.
23.1.1-7 H.J.Böhmer, „Wälzverschleiß und -ermüdung von Bauteilen und Maßnahmen zu ihrer
Einschränkung“, Zeitschrift „Materialwissenschaft und Werkstofftechnik”, 29 (1998), page 697-713.
23.1.1-8 H.Schlicht, E.Schreiber, O.Zwirlein, „Ermüdung bei Wälzlagern und deren Beeinflussung
durch Werkstoffeigenschaften“, Zeitschrift „Wälzlagertechnik”, 1987-1, page 14-22.
23.1.1-9 O.Zwirlein, H.Schlicht, „Werkstoffanstrengung bei Wälzlagerbeanspruchung-Einfluss
von Reibung und Eigenspannungen“, Zeitschrift „Werkstofftechnik”, 11, 1-4 (1980), page 1-14.
23.1.1-10 L.Engel, H.Klingele, „Rasterelektronenmikroskopische Untersuchungen von
Metallschäden“, 2. Auflage, Carl Hanser Verlag München Wien 1982, ISBN 3-446-13416-6, page 160-168.
23.1.1-11 NTSB Identification: NYC961A036, „Incident Dec-07-95, Boeing 747-240”, page
1. (351-114)
23.1.1-12 NTSB Identification: DEN911A028 microfiche number 43589A, „Incident
Dec-19-90, Boeing 727-22“, page 1.
23.1.1-13 NTSB Identification: FTW951A064, „Incident Dec-12-94, Aerospitale ATR 72-212”,
page 1.
23.1.1-14 „Investigation Team Identifies Causes of CF6-80 Problem“, Zeitschrift „Aviation Week
& Space Technology”, February 7, 1983, page 32.
23.1.1-15 H.Schlicht, „Über die Entstehung von White Etching Areas (WEA) in Wälzelementen“,
Zeitschrift „Härtereitechnische Mitteilungen = HTM” 28 (1973) Heft 2, page 113-123.
23.1.1-16 „Metals Handbook, Ninth Edition, Volume 11, Failure Analysis and Prevention“,
American Society for Metals (ASM), ISBN 0-87170-007-7, 1986, pages 1, 4, 490-513.
23.1.1-17 HK.Lorösch „Die Gebrauchsdauer von Wälzlagern hängt nicht nur von der Tragzahl
ab”, FAG-Berichte aus der Firmengruppe „Wälzlagertechnik . Industrietechnik“, Heft 503DA,
1992, page 15-21.
23.1.1-18 L.Chang, C.Cusano, T.F.Conry, „Analysis of High-Speed Cylindrical Roller Bearings
Using a Full Elastohydrodynamic Lubrication Model, Part 1: Formulation and Part 2: Results”,
Zeitschrift „Tribology Transactions“ Volume 33, Number 2, April 1990, page 274-291.
23.1.1-19 V.P.Povinelli Jr., „Current Seal Design and Future Requirements for Turbine Engine Seals
and Bearings”, Zeitschrift „Journal of Aircraft“ Vol. 12, No.4, April 1975, page 266-273.
23.1.1-20 B.A.Tassone., „Roller Bearing Slip and Skidding Damage”, Zeitschrift „Journal of
Aircraft“ Vol. 12, No.4, April 1975, page 281-287.
23.1.1-21 F.J.Ebert, W.Trojan, H.W.Zoch, „Hochaufgestickter, martensitischer Wälzlagerstahl
ist ermüdungsfest und korrosionsbeständig”, Zeitschrift „Wälzlagertechnik-Industrietechnik“ Fa.
FAG Kugelfischer, Ausgabe 1992-503DA, page 9-21
23.1.1-22 L.Engel, H.Winter, „Wälzlagerschäden”, Zeitschrift „ANT-Antriebstechnik“ 18 (1979
Nr. 3, page 71-74.
23.1.1-23 H.Schlicht, O.Zwirlein, „Werkstoffeigenschaften und Überrollungslebensdauer”,
Zeitschrift „ZWF“, 76 (1981) 6, page 298-303.
23.1.1-24 P.Dreschmann, K.Lorösch, R.Weigand, „Das Verhalten von Wälzlagern aus
unterschiedlichen Werkstoffen bei ungünstiger Schmierung-ein Forschungsbericht”, Zeitschrift
„Wälzlagertechnik“, 1983-1, page 34-39.
23.1.1-25 J.H.Brahney, „Film Thickness: the key to bearing performance”, Zeitschrift
„Aerospace Engineering“, June 1987, page 19-22.
23.1.1-26 F.Greby, „What turbine technology is teaching us about High-Speed Roller Bearings”,
1972, 6 Seiten.
23.1.1-27 P.Nicolich, „Geräte zur Bestimmung der Unwucht von Rollkörpern der Fluglager“,
Zeitschrift „Wälzlagertechnik-Industrietechnik” Fa. FAG Kugelfischer, Ausgabe 1990-501, page 39-43.
23.1.1-28 H.M.Flower, „High Performance Materials in Aerospace“, Verlag „Chapman & Hall”,
page 163-173.
23.1.1-29 B.Alfredsson, M.Olsson, „Standing contact fatigue“, Verlag „Blackwell Science
Ltd.”, Zeitschrift „Fatigue Fract Engng Mater Struct“ 22, 2. November 1998, page 225-237.
23.1.1-30 R.Errichello, „Another Perspective: False Brinelling and Fretting Corrosion”,
Zeitschrift „Tribology & Lubriction Technology “, April 2004, page 34-36.
23.1.1-31 B.Frisch, V.Wigotsky, „Computer Programs, Guidelines für High Speed Bearing
Design”, Zeitschrift „ Astronautics & Aeronautics“ April 1983, page 6-9.
23.1.1-32 K.T. O'Brien, C.M.Taylor, „Cage Slip in Roller Bearings” , Zeitschrift „
J.mech.Engng. Science“,15 (1973) , Nr. 5, page 370-378.
23.1.1-33 P.F.Brown, „Bearing Retainer Material for Modern Jet Engines” , Paper des „25th
ASLE Annual Meeting“ in Chicago, May 4-8, 1970, Zeitschrift „ ASLE Transactions”,13 (1973) ,
page 225-239.
23.1.1-34 R.P.Shevchenko, „Lubricant Requirements For High Temperature Bearings“ , Paper
660072 des SAE „Automotive Engineering Congress” Detroit, Michigan, January 10-14, 1966, page
1-12.
23.1.1-35 R.G.Edge, A.T.B.P.Squires, „Lubricant Evaluation and Systems Design for Aircraft Gas
Turbine Engines“ , Paper 690424 des SAE „National Air Transportation Meeting” New York, April
21-24, 1969, page 1-21.
23.1.1-36 T.Tauqir, I.Salam, A.ul Haq, A.Q.Khan, „Causes of fatigue failure in the main bearing of
an aero engine“, „Engineering Failure Analysis 7”, (2000) Pergamon Verlag, page 127-144.
23.1.1-37 P.F.Brown, L.J.Dobek, M.J.Carrano, R.A.Valori, R.D.Daytonn, „Increase the Wear Life
of Gas Turbine Engine Roller Bearings“, Paper der Proceedings AGARD-CP-323, „Problems
in Bearings and Lubrication”, chapter 3-1.
23.1.1-38 F.J.Ebert, W.Trojan, H.W.Zoch, „Hochaufgestickter, martensitischer Wälzlagerstahl
ist ermüdungsfest und korrosionsbeständig“, Zeitschrift „Wälzlagertechnik-Industrietechnik” Fa.
FAG Kugelfischer, Ausgabe 1992-503DA, page 9-21.
23.1.1-39 E.Broszeit, F.Schmidt, H.J.Schröder, „Werkstoffanstrengung im Hertz'schen Kontakt
infolge Last -und Eigenspannungen“, Zeitschrift „Werkstofftechnik”, Nr. 9, page 210-214.
23.1.1-40 J.Schmidt, W.K.Hank, A.Klein, K.Maier, „The Oil/Air System of a Modern Fighter
Aircraft Engine“, MTU-München GmbH, page 1-20.
23.1.1-41 J.L.Caggianor, „Shaft Voltage Measurement-A Technique for Detecting `Electrical'
Problems in Turbomachinery”, Zeitschrift „Turbomachinery International“,July-August 1983, page
26-31.
23.1.1-42 H.Boyanton, „Bearing Damage Due to Electric Discharge”, „Shaft Grounding
Systems, Inc.“,1995, page 1-25.
23.1.1-43 „Stray currents can damage turbine bearings”, Zeitschrift „Power Engineering“,August
1997, page 1 and 2.
23.1.1-44 D.J.Powell, G.W.Jewell, J.D.Ede, D.Howe, „An integrated starter-generator for a large
civil aero-engine”, Paper AIAA 2005-5550 der „3rd International Energy Conversion
Engineering Conference“ 15.-18 August 2005, San Francisco, California, page 1 f.f.
23.1.1-45 R.R.Secunde, „Integrated Engine-Generator for Aircraft Secondary Power”, 1972, page
1 f.f.